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The Yellowstone Volcanic Complex (YVC)
2e2YAYy3dIQa ,Sttzgadz
inspires intense geologic interest

What is the source of the crustal hepot?

When will Yellowstone explosively erupt
again?
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Introduction

AA number of exciting models
have been created of the
subsurface of the Yellowstone
Snake River Plain area in order to
seek answers to our guestions




Introduction

ATo date, most or all of the study
of the YVC has involved
seismology and tomography,
earthquake andjeomagnetics
GPS anthSARBouguer gravity
anomaly, and combinations
therein [8, 9, 10, 11, 12, 15, 16,
20, 25, 29, 30, 34]
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Introduction

ATo date, most or all of the study
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Introduction

Al d ' G KQa {SAayzftz23eé | yR-!O00AOS
(DeNosagqueet al., 2009) utilizes heat flow data
A Constraint of focal depths for earthquakes in and around YVC

ANo computational heat flow modeling at depth pertaining to eruption
dynamics has been accomplished by their group or any other

ASolution: de Silva ar@osnold 2007

A Study of AltiplanePuna Volcano Complex
ANumerical and computational thermal modeling approach



Introduction

APresent study

Aa geophysical study of the magma system and eruption conditions existing
previously and currently in the Yellowstone Volcanic Complex (YVC) of
2 g2YAYy3Qa Stft2¢6ait2yS blFidAaA2yEFt t I NJ
A Rheology and lithospheric strength analysis
A Crustal heat flow modeling



Methodology

1. Intrusion Rate
2. Mechanical Strength Profile
3. Crustal Heat Flow Modeling



Finite Difference Heat
Flow Simulation, or

a ! wd Cgustal Heat
Flow Modeling

Example computer screen capture of an ARC model
simulation in progress Brunson, 2017.

]IcTinite difference determination of steaestate heat
ow

calculating temperature and heat generation for a
given system subdivided into cells

heat transfer to and from surrounding cells [13]

Sze/stem is modeled using ASCII format input codes
[VI' 13] and desired values of system parameters in a
Icrosoft Excel file:

Thermal conductivity

Radiogenic heat production

Basal heat flow

Heat capacity of rock and fluid density
Advection constraints

Starting temperatures

Velocity

Direction and cell size and model dimensions

Opensource, lightweight, and flexible program




Finite Difference Heat Flow Simulation, or

4
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Multiple Simulations Running Complex Systems Modeling (e.g.,
Practical Geothermal Energy System)

Simultaneous

ly




Preliminary Results

Establishing confidence in the proposed study methods



Arc Heat Flow Model of YVC Subsurface

Huang et al., 2015
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Other Models Available to Inform Heat Flow
Model Experiment

Farrell, et al., 2014 DeNosaqucet al., 2009
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Preliminary Results Summary

APreliminary results are highly encouraging

AA completed study should provide some added ability to understand
the geological processes and mechanisms at work in volcanic systems
and help constrain eruption timing of YVC.




NASA Relevance

Planetary formation and evolution, the
understanding of which would fall within the

2018 NASA Strategic Plan Objective 1.1 [37],

is heavily constrained by heat flow [2]
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NASA Relevance

Heat Flow and Physical Properties Preferred presentday surface heat
Package (HP3)Mars InSightLander flow model for Mars [26]




