

Renewable Rocket Engineering

Liquid-fueled Rocket Motor

Overview

- Team Introduction
- About The Project
- Design Overview
- Current Project Status
- Conclusion

Project Team

- Team members:
 - Benoit Saulnier Project manager
 - Interested in space exploration and propulsion systems
 - Sub-system responsibility: Pumping systems
 - Nathan Juven
 - Interested in the aerospace field and space exploration
 - Sub-system responsibility: Heat exchanger and swirler
 - Raymond Daly
 - Interested in aerospace engineering and sustainability
 - Sub-system responsibility: Combustion chamber and nozzle
 - Deane Casey
 - Interested in aerospace engineering and renewable energy
 - Sub-system responsibility: Fuel storage and assembly
- Faculty advisor: Dr. Forrest Ames

Project Background

- Overall goal is to design a liquid-fueled rocket capable of reaching the Karman Line (internationally recognized boundary of space – 100 km)
- Initially started as part of the BASE-11 launch competition
- Continued as a mechanical engineering senior design project for ME 487/488, this is the third year
- Ethanol/LOX fueled rocket, 2250 lbf thrust
- We have formed a student organization called Renewable Rocket Engineering
- Base 11 was cancelled until further notice

Design Concept

- 3 tanks 2 Ethanol + 1 Liquid O2
- Pumps for Ethanol and LOX
- Combustion chamber and nozzle regeneratively cooled with the help of a recirculation system
- LOX gasified through a heat exchanger and fed to the combustion chamber via swirlers – for optimized mixing
- Electrical system will be powered by LiPo batteries – will power the pumping systems and the ignition system

Rocket Concept Flow Chart ED) Highest Pressure

Rocket Specifications

- Design thrust: 2250 lbf
- Planned weight: 1500 lb w/ 1000 lb being fuel and oxidizer
- Thrust to weight ratio: 1.5
- Fuel flow rate: 1.7 kg/s
- Oxidizer flow rate: 2.1 kg/s
- Chamber pressure: 24 bar
- Electrical power required: 25 kW for approximately 2 minutes

Project Description

- This year's team will conduct analysis, design, fabrication, and testing of the following subsystems:
 - Heat exchanger
 - Nozzle
 - Pumping systems
 - Combustion chamber
 - Fuel and oxidizer storage
 - Fuel and oxidizer tank insulation

Current Design: Heat Exchanger

- Current Status
 - Flow analysis on heat exchanger completed
 - Assessed flow rate, design parameters and pressure loss in the heat exchanger.
 - Multi-pass parallel flow shell and tube heat exchanger
 - 242 tubes for ethanol
 - 8 baffles for oxygen to direct flow over the tubes
 - Materials have been received and fabrication started.
 - In large part thanks to the grant received from NDSGC

Current Design: Swirlers

Current Status

- Swirler design amended
 - Swirler vane angle changed from 50 to 60 degrees for better mixing
 - 8 vanes instead of 6
- Repositioning of the holes on the inner tube and redesign of the swirler vane
- Inner and outer tubes have been purchased
- What's Next
 - Looking to get final approval of design to begin fabrication and testing

Sweep Method

Multizone Method

•

٠

CAD

CAD

Recently accomplished: -Variable Cross-Section

Next Steps: -Shell on the outside

-Recapture Ports

-Recapture System

Fabrication:

3 methods of fabrication explored:

- Tube bending
- 3D printing
- Investment casting

Investment Casting

Low-Ash Stereolithography

Selection of Firm

A Global Leader

Our Mold Making Division

Current Design: Pumping systems

- Current Status:
 - Stainless steel centrifugal pump (LOX)
 - Flow and power calculations confirmed
 - RAE pumps GMVCP 8 centrifugal pump
 - Aluminum gear pumps (ethanol)
 - Danfoss SNP3NN 033/075 gear pump selected
- What's next?
- Obtain drawings and pricing for centrifugal pump
- Complete the motor coupling design
- A 075 Ordered

Current Design: Storage and Mounting System

Current Status

- Tanks
 - Triangular support design
 - Composite struts
- Insulation & Mounting
- Solomide/Microlite Blanket
- Plastic composite nails

Next Steps

- Determine design constraints for reducing vibrations
- Heat loss and stress analysis
- Select adhesive and determine curing methods
- Select mounting nails/brads

Conclusion

- Our team has met several of its objectives for this year, including:
 - Approved analysis of heat exchanger subsystem
 - Design and drawings for the heat exchanger
 - Materials ordered for the heat exchanger, tanks and pumping
- Fabrication and testing is currently taking place.
- Full system testing will probably be a goal for next year's team, in continuation towards the objective of building a flight-ready rocket.

Nathan.Juven@und.edu Benoit.Saulnier@und.edu Deane.Casey@und.edu Raymond.daly@und.edu

References

- Base11. (2018, November 28). Base 11 space challenge logo winners announced. Base 11. Retrieved October 8, 2021, from https://www.base11.com/logo-winners/.
- Berger, E. (2021, August 5). *Blue Origin's powerful BE-4 engine is more than four years late-here's why*. Ars Technica. Retrieved October 8, 2021, from https://arstechnica.com/science/2021/08/blue-origins-powerful-be-4-engine-is-m ore-than-four-years-late-heres-why/.
- Jensen, M. (2020, March 9). NASA launches USU student-built experiment into space: College of Engineering. USU. Retrieved October 8, 2021, from https://engineering.usu.edu/news/main-feed/2018/nasa-launches-usu-student-e xperiment.
- Space Coast Daily. (2018, June 20). This day in history: Space shuttle columbia STS-78 launches from Kennedy Space Center in 1996. Space Coast Daily. Retrieved October 8, 2021, from https://spacecoastdaily.com/2018/06/this-day-in-history-space-shuttle-columbiasts-78-launches-from-kennedy-space-center-in-1996/.