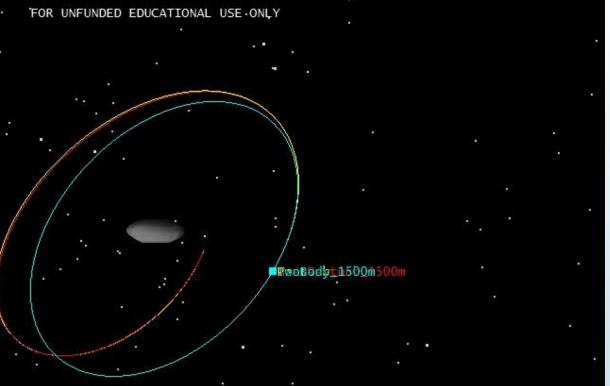
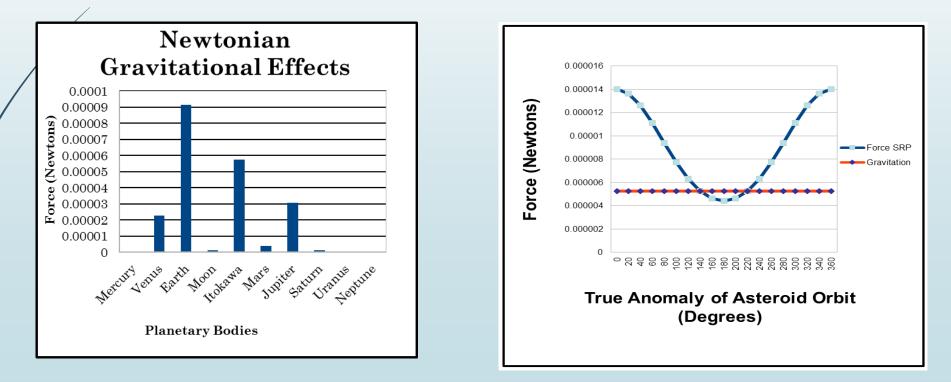
Precision Control Autonomous Systems for NEO Mission Design


Karl Williams Matthew Zimmer

Project Basis / Motivation

- Asteroid mission has received a lot of attention in recent years
 - Defense, economic and exploration purposes
- Current missions
 - DAWN and HAYABUSA II (2014-15 Launch)
- Orbital control as not been demonstrated around objects of small diameters
 - 500 meter in diameter scale

Let's Look at an Example.


GravPerturb_1500m Fi Time (UTCG): 22 Oct	xed Position Veloc 2013 17:30:00.000	ity ·
x (km):	-1.063534	
v (km):	1.056644	
z (km)	0.047635	
vx (km/sec):	0.000134	
vv (km/sec):	0.000134	
vz (km/sec):	0.000026	
Perturb_1500m Fixed	Position Velocity	
Time (UTCG): 22 Oct	2013 17:30:00.000	
x (km):	-1.063535	
y (km):	1.056665	
z (km).:	0.047635	-
vx (km/sec):	0,000134	1
vy (km/sec):	0.000134	
vz (km/sec):	0.000026	
TwoBody_1500m Fixed	Position Velocity	
Time (UTCG): 22 Oct		1
x (km):	-1.063499	e 🌔 👘
y (km):	1.056742	
·z (km):	0.047608	20 <mark>1</mark> 00
vx (km/sec):	0.000134	1.
vy (km/sec):	0.000134	- 1
vz (km/sec);	0.000026	

22 Oct 2013 17:30:00.000


Classifying the Problem

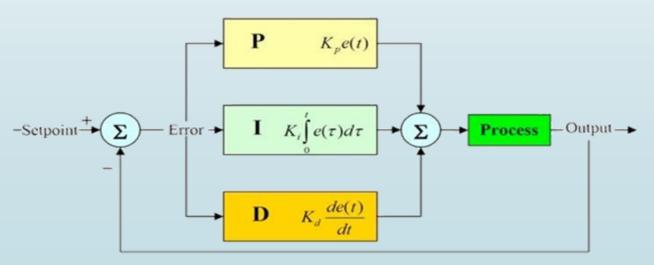
- Need to determine regions of natural stability
 - Balance between complex gravitation, solar radiation pressure and third body perturbations
 - Which orbital parameters are needed such that our spacecraft stays in orbit for a longer duration of time disregarding external control

Standardizing the Model

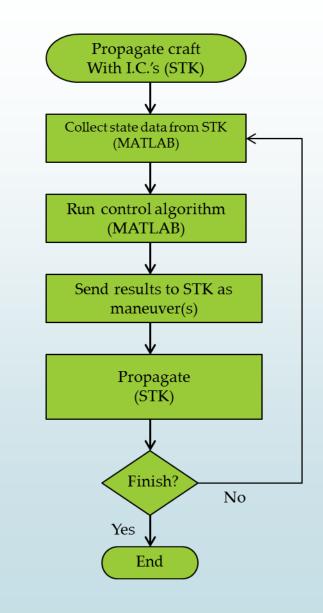
- Running multiple simulations on different computers
 - Prone to error due to changing initial conditions
- Asteroid characteristics
 - Epoch
 - Rotation
 - Gravity Model
- Create a standard satellite model
 - Surface Area
 - Dry Mass
 - Fuel mass

25143 Itokawa (JAXA – 2005)

Standardizing the Model


- Custom Ion Engine Model
 - Maximum & Minimum Power
 - Specific Impulse
 - Mass Flow Rate
- Based on existing 8 cm Ion Engine*

*L3 Communications


PID Control

- Proportional, Integral, Derivative Control
 - Error Function: Current altitude vs desired altitude
- Execution
 - Proportional push based on error
 - Integral constant summation (plus correction) of the error over the simulation
 - Derivative monitors the position's rate of change and helps to eliminate rapid fluctuations leading to overshoot

Simulations

- Interface Matlab and STK
- Orbital Mechanics vs PID Control
 - Hohmann Transfer is useful for direct control
 - PID is useful for indirect control
- Multiple simulations ran
 - Impulsive burns
 - Finite burns

Questions?

- We would like to thank:
 - Josh Johnson, Chris Church
 - Dr. Ron Fevig, Dr. William Semke
 - North Dakota Space Grant Consortium
 - UND Seed/Planning Grant for Collaborative Research, Proposal Entitled, "The Development of Predictive Control for Autonomous Systems"
 - NSF Grant #EPS-081442