

Educating NDSU AIAA Students Aerospace Engineering Practices through CanSat Competitions

NDSU Flying Bison Mitch Nordahl

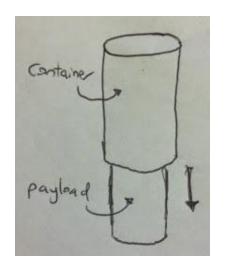
- Competition in Texas
- Aerospace System Design and Test
- Electromechanical Assemblies

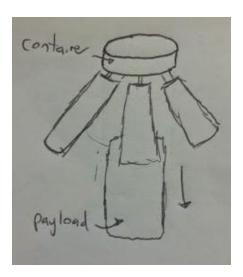
- Design a payload & container for geometry specifications:
 - Size: 125 mm x 310 mm, Weight: 600 g
- Container: Deployed from rocket, descent via parachute
- Payload: Deployed from container when stable above 300 m
 - Descent of 10 m/s or less via auto-gyro method
 - Telemetry data will be recorded & sent at 1 Hz
 - Video will be recorded without payload spin
- Goal: Safe landing with egg intact

 Selectable Objective: Three axis-accelerometer to measure stability & angle of descent.

NDSU System Requirement Summary

ID	Requirement	Rationale	Priority	Children	VM			
ID.	rtoquiromont		Rationale Priority		Α	- 1	Т	О
SR-1	Total mass of the CanSat shall be 600 grams +/- 10 grams without the egg.	BMR	High	MR-1		X	Х	
SR-2	The payload shall be completely contained in the container. No part of the payload may extend beyond the container.	BMR	High	MR-3			X	X
SR-3	Container shall fit in the envelope of 125 mm x 310 mm including the container passive descent control system.	BMR	High	MR-4			Х	
SR-4	The container shall use a passive descent control system.	BMR	High	DCR-1	X		X	Х
SR-5	The container shall not have any sharp edges to cause it to get stuck in the rocket fairing section.	BMR	High	DCR-2 MR-5		Χ		
SR-6	The container shall be a florescent color, pink or orange.	BMR	High	MR-6		X		
SR-7	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	BMR	High	DCR-3				Х
SR-50	Use accelerometer to measure stability & angle of descent.	SO	Medium	SRR-5, 6	Х		X	Χ



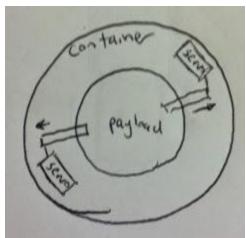

System Level CanSat Configuration Trade & Selection

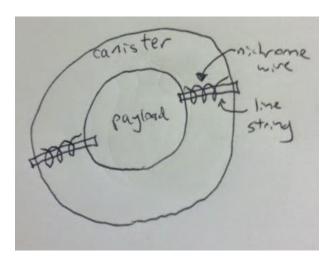
- Preliminary system-level concepts considered:
 - General Shape & Integration Selection

Shape & Integration	Pros	Cons	
Cylinder in Cylinder	Easy to Manufacture	Payload may get Stuck	
Cylinder in Break-Away Cylinder	Payload Easily Released	More Parts, May Break	

> Selection: Cylinder in Cylinder, Easy to Manufacture & Sturdy

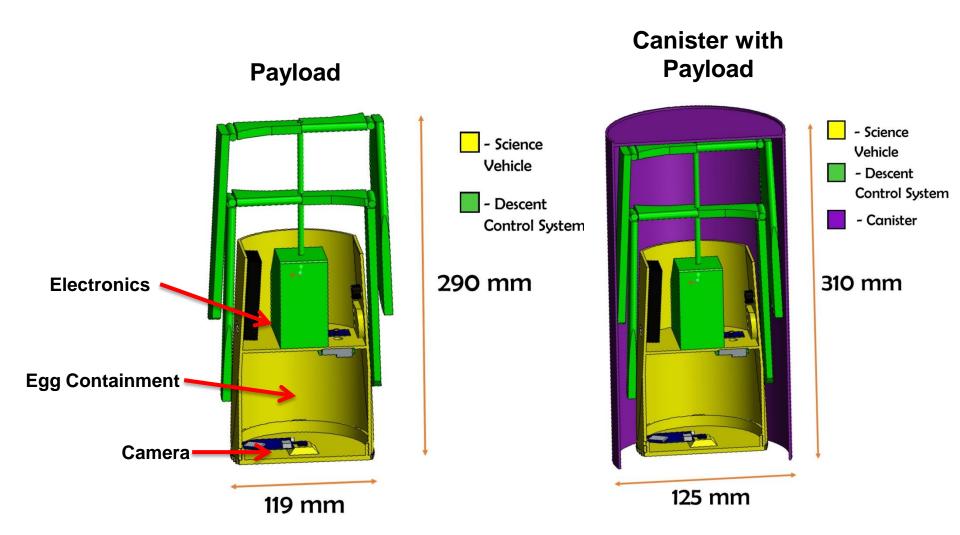
System Level CanSat Configuration Trade & Selection




Detachment Methods

Method	Pros	Cons	
Servo Ring	One mounting point	Difficult to Manufacture	
Servo Rods	Easy to implement in our design	Two mounting points	
Nichrome Wire Cutter	Most Secure	Difficult to Time	

Presenter: Mitchel Nordahl



>Selection: Servo Rods, Easiest to Implement

6

Electronics Selections

Company	ID	Price	Weight (g)	Size (cm)	Resolution (bits)	Sample Rate (Hz)	Voltage (V)	Connection Type
Sparkfun	MMA7 361	\$11.95	50	1.27 x 2.286	13	-	2.2-3.6	Analog
Sparkfun	ADXL3 45	\$27.96	0.02	0.334 x 0.534	13	6.25-400	2-3.6	I2C
Sparkfun	MMA8 452Q	\$9.95	4	1.778 x 1.778	12	1.56-800	1.95-3.6	I2C

Final Selection: Sparkfun MMA8452Q

- Connection Type
- Cost

Presenter: Mitchel Nordahl

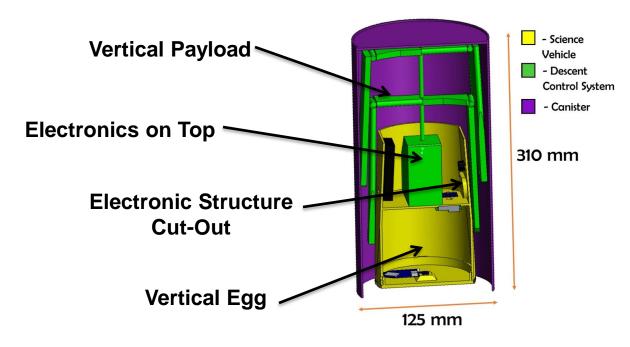
Voltage Needed

- Properly sized parachutes for container
- Correct material selection with weight and CG calculation
- Servo control for release of payload from container
- Payload spin reduced for video feed
- Ability to withstand shock

Equation relating surface area of parachute for container & payload to descent velocity:

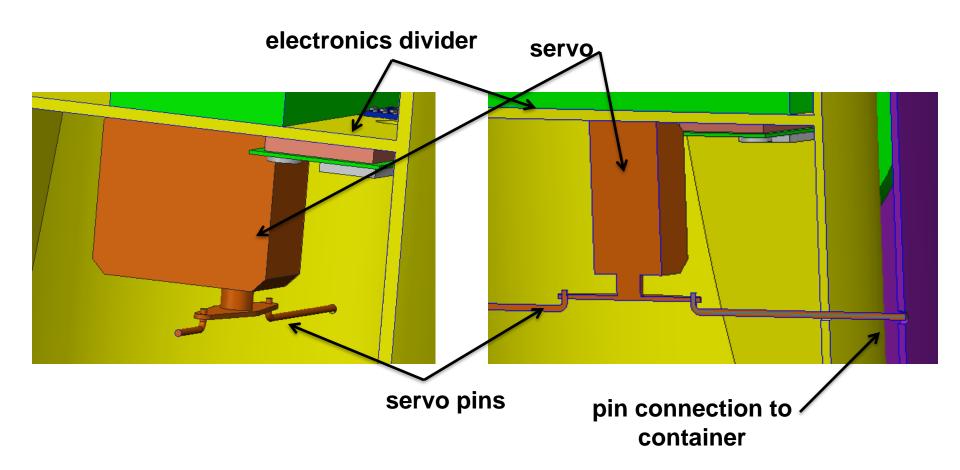
$$V = sqrt(2W/(\rho*Cd*S))$$

- $S = \text{surface area}, S = \pi r^2$
- W = weight


- P = air density,
 - At 30 C is 1.1644 kg/m³
- Cd = coefficient of drag
 - 0.3 for parachute
 - 1.15 for payload

Mechanical Layout of Components Trade & Selection

Mechanical Layout	Pros	Cons	
Electronics Housed in Top	Closer to Propeller Assembly	Wires Must be Ran to Camera	
Electronic Cut-Outs in Payload Structure	More Secure	Wires Must be Cut Precisely	
Egg Vertical	Payload can be Less Wide	Less Room for Electronics	
Payload Vertical	Starts Right-Side Up	Propellers More Apt to get Caught	


Presenter: Mitchel Nordahl CanSat 2015 PDR: Team 6101 (NDSU Flying Bison)

Container - Payload Interface

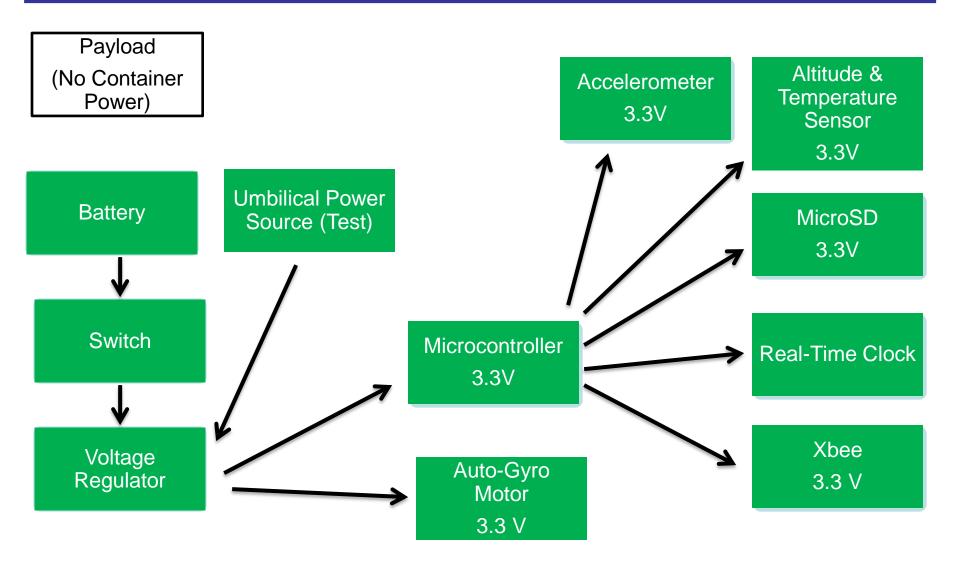
Servo Connections

Container					
Component	Mass (g)	Source			
Frame	110	Estimate			
Parachute	18	Dealer Specs			

Container Total: 128 grams Payload Total: 470.1 grams

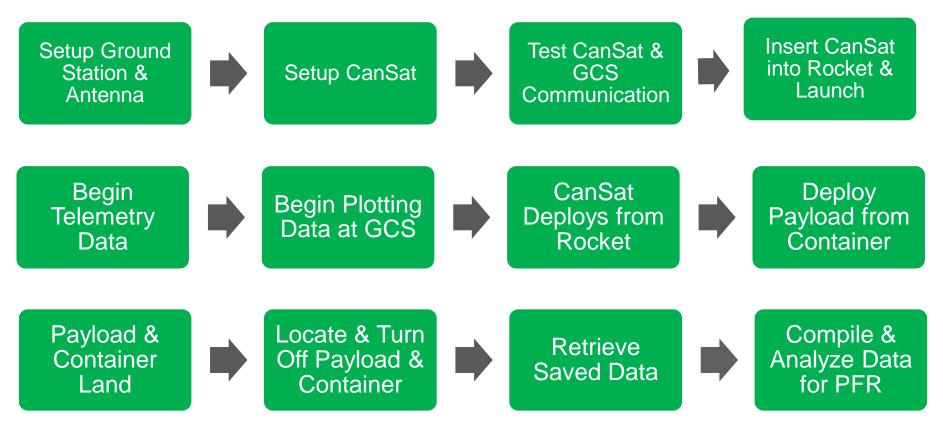
Total: 598.1 grams

Presenter: Mitchel Nordahl

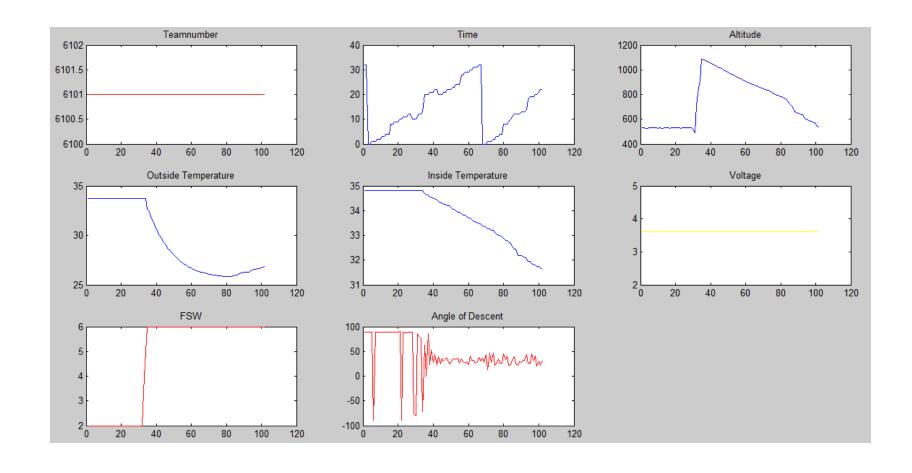

Corrections can be made at launch be reducing frame material & wiring connection components

Payload					
Component	Mass (g)	Source			
Frame	280	Estimate			
Arduino Pro	8	Dealer Specs			
Altitude / Pressure / Temperature Sensor	1	Dealer Specs			
Accelerometer	4	Specs			
XBEE Module	5	Dealer Specs			
Separation Servo	9.5	Specs			
XBEE Explorer	6.2	Dealer Specs			
Auto-Gyro Assembly	50	Estimate			
Egg Protection	30	Estimate			
MircoSD Board	3.4	Dealer Specs			
Battery	23	Specs			
Camera	40	Estimate			
Wiring & Connectors	10	Estimate			

SUGA Electrical Block Diagram



- Basic FSW architecture
- Programming Language
 - Arduino → C++
- Development environments
 - Arduino IDE
- Brief summary FSW tasks
 - Read sensors
 - Compile data
 - Send data & save data to memory
 - Deploy payload
 - Aware when container & payload have landed



Team members will all work together on all tasks

Payload Separation from Canister

- Initial Servo Failure from super glue
 - Required Larger Servo
- Foam interference
 - Did not allow full range of motion
- Caused descent Rate requirements Failure
 - Canister parachute size determined for canister weight not combined weight

Failure Analysis

Camera Recording Objective

- Battery Failed to fully Charge
 - Voltage Dropped during Travel
 - 3.8V to 0V
- Camera Detachment upon Impact
 - Payload did not separate from canister
 - Decent rate was faster than engineered

How Does Cansat Help Students?

Educates with Hands On Experience in

- Product Development
- Programming
- CAD Design
- System Integration
- System Testing
- Subsystem Communications
- Failure Analysis

QUESTIONS???

Questions?

