

# **Strange New Planet**

# **Procedures:**

- □ **Worksheets** (students may also use a blank sheet of paper, splitting the page into 4 quadrants)
- Grade Levels: **K-8** (adaptable for older students)
- □ This activity will take: **45 minutes to 1 hour**

### Lesson Overview:

- Students will plan and conduct their own real-world robotic space exploration mission.
- Students will use 21<sup>st</sup> Century Skills to conduct solar system observations, perform self-directed problem solving, and communicate within a team.

### **Goals of this lesson:**

- Practicing communication
- Improving reading and vocabulary
- Improving collaborative team-work skills
- Making relevant observations
- Thinking critically
- Self-direct their own mission
- Revealing different science jobs

#### □ Other adaptations:

- Older students can design their own planets, supplying a key for other teams. After observations are complete, each team can compare.
- Additional observations can come from a **rover**, such as Mars' Curiosity Rover. A student can select one landing location and touch the planet with one finger. Students will communicate to other teams the reason they selected that spot.
- For older students: introduce a budget, having students submit a written proposal and justification for desired observations.

#### □ For Instructors:

- Group together students, with four in a group (no more than 5)
- Discuss the five roles for the activity (doesn't have to be in this order):
  - Astronomer
  - Satellite
  - Flyby Mission
  - Orbiter
  - Mission Control
- Overall tips: make sure students are observing the correct planet. Otherwise, the entire activity can get confusing. If this happens, teach them about how this sometimes happens in real life, for astronomers. You can position number signs on the planet table or visually show them where their planet is.

Adapted from NASA's Lunar and Planetary Institute (<u>http://marsed.asu.edu/</u>)



# **Strange New Planet**

## Conducting the activity:

| Students' Roles                                                                                                                                                                                                                                                                                  | Instructor's Role                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Mission Control</b><br>Students will take messages from their<br>peers, interpret what they visually<br>observed, and create an artists' rendition<br>on their worksheet.                                                                                                                     | Talk about the importance of mission<br>control (protecting astronauts, relaying<br>information, stress communication and<br>collaboration).<br>All students will act as MC, unless there are                                                                                                                                                                                                 |
| They cannot look at the planets.                                                                                                                                                                                                                                                                 | groups of 5. In this case, the fifth student<br>will have all MC responsibilities.<br>Make sure all students do not peak at the<br>mystery exoplanets. Tell them that as MC,<br>they are millions of miles away and unable<br>to see exoplanets with the naked eye. Also,<br>tell them the big reveal is WAY more fun<br>without cheating. They will all see the final<br>product at the end. |
| Astronomers<br>Student astronomers<br>will take their PVC<br>pipes and stand on the<br>opposite side of the<br>room. They are only<br>allowed to look at<br>their planet through<br>the tube (with the<br>blue filter). They have<br>one minute to view,<br>standing in place<br>without moving. | Distribute the PVC pipes – WITH the blue<br>filters on the ends – to astronomers.<br>Post-view: ask students what they think<br>the blue filter is. Did they have a hard time<br>distinguishing colors? How would they fix<br>this "atmosphere is in the way" problem?                                                                                                                        |
| Satellites<br>Student astronomers will take their PVC<br>pipes and stand on the opposite side of<br>the room. They are only allowed to look<br>at their planet through the tube (without<br>the blue filter). They have one minute to<br>view, standing in place without moving.                 | Take off the blue filter (atmosphere).<br>Satellites orbit the earth, so their angle<br>slightly changes (could discuss parallax of<br>stars). Students may pivot in place or take<br>one step side to side.<br>Are they still too close? How might they get<br>a closer view?                                                                                                                |





# **Strange New Planet**

| SPACE GRANT CONSORTIUM                         |                                                    |
|------------------------------------------------|----------------------------------------------------|
| Flyby Missions                                 | Fold the black trash bag <b>off the front half</b> |
| Students, with solar panel arms positioned     | and over the back half of the planets. If a        |
| out like chicken wings, will walk past the     | planet have a moon, <u>keep it covered</u> .       |
| table, with only the front half of the planets |                                                    |
| revealed. They will walk swiftly (not          | Info: Flyby missions observe multiple              |
| stopping) when they approach their             | celestial bodies in the same trip.                 |
| planet.                                        | Compared to an orbiter: Talk about fuel            |
| pluitet                                        | consumption, they don't have to slow               |
|                                                | down or change directions.                         |
| Orbiters                                       | Remove the black bag off the table,                |
|                                                | 5                                                  |
| Student orbiters, with                         | completely. Instruct students to walk              |
| their solar panel arms,                        | around the table, only once.                       |
| will walk around the                           | mi i i i i i                                       |
| table, viewing all 360°                        | They should now be able to see any visible         |
| of the planet. They will                       | moons for the first time!                          |
| relate their                                   |                                                    |
| observation to the MC                          | <i>Some</i> spacecraft use solar panels. Have      |
| student.                                       | students create their power source with            |
|                                                | their arms.                                        |
| (optional): <b>Rover Lander</b>                | If you have time, introduce the exploration        |
|                                                | factor: landing <b>ON</b> the planet!              |
| Students can place one finger on a             |                                                    |
| landing location.                              | This step can be merged with the <i>big</i>        |
|                                                | reveal, if you need to consolidate steps.          |
| All students can view their mystery            |                                                    |
| planet now.                                    | Q: where do students want to land? Why?            |
|                                                | Is blue a water ocean? Or poisonous                |
|                                                | methane? Is green a forest? Can a white            |
|                                                | surface be ice, or a gaseous cloudy                |
|                                                | environment? Are they landing a rover or           |
|                                                | airborne balloon? Would they prefer a              |
|                                                | rocky body or gas giant?                           |
|                                                | roomy body of Bas Branci                           |
|                                                | Discuss the importance of communication            |
|                                                | between scientists and engineers: the              |
|                                                | safest location may not be an exciting area        |
|                                                | to study.                                          |
|                                                | to study.                                          |
|                                                | Also, student could land on Moong to               |
|                                                | Also: student could land on Moons, to              |
| Example follow-up questions:                   | observe their planet closer.                       |

## **Example follow-up questions:**

- What was the most challenging aspect of this team activity?
- After this activity, do you think scientists work alone or in teams?
- What are the advantages of having a variety of missions? Should we immediately plan a visit to somewhere we haven't observed from Earth?